Portfolio item number 1
Short description of portfolio item number 1
Short description of portfolio item number 1
Short description of portfolio item number 2
Presented at WCCRT 2017
Linghao Kong*, Michael M. Murata*, & Michelle A. Digman
Published in Biochemical and Biophysical Research Communications, 2018
Linghao Kong*, Michael M. Murata*, & Michelle A. Digman
Download Paper | bioRxiv
Presented at CUURS 2019
Linghao Kong, Benjamin D. Hobson, & Peter A. Sims
Published in eLife, 2020
Benjamin D. Hobson, Linghao Kong, Erik W. Hartwick, Ruben L. Gonzalez, & Peter A. Sims
Download Paper | bioRxiv
Presented at CUURS 2020
Benjamin D. Hobson, Linghao Kong, Erik W. Hartwick, Ruben L. Gonzalez, & Peter A. Sims
Presented at CUURS 2021
Benjamin D. Hobson, Linghao Kong, Maria Florencia Angelo, Ori J. Lieberman, Eugene V. Mosharov, Etienne Herzog, David Sulzer, & Peter A. Sims
Published in Cell Reports, 2022
Benjamin D. Hobson, Linghao Kong, Maria Florencia Angelo, Ori J. Lieberman, Eugene V. Mosharov, Etienne Herzog, David Sulzer, & Peter A. Sims
Download Paper | bioRxiv
Presented at NEMI 2024
Shashata Sawmya*, Linghao Kong*, Ilia Markov, Dan Alistarh, & Nir N. Shavit
Presented at COSYNE 2025
Linghao Kong*, Heidi Durresi*, Lu Mi, & Nir N. Shavit
Download Paper
Published in ICLR 2025 as a Spotlight Presentation
Shashata Sawmya*, Linghao Kong*, Ilia Markov, Dan Alistarh, & Nir N. Shavit
Download Paper | arXiv
Published in Neural Networks, 2025
Neehal Tumma*, Linghao Kong*†, Shashata Sawmya, Tony T. Wang, & Nir N. Shavitâ€
Download Paper | bioRxiv
Presented at ICML 2025 Workshop HiLD
Linghao Kong*, Angelina Ning*, & Nir N. Shavit
Download Paper
Course Assistant, Columbia University, Computer Science Department, January 2021 — May 2022
Guided students to implement the mathematical and theoretical principles taught in class in Python-based applications and problem sets through weekly office hours and biweekly lab sessions.
Research Mentor, MIT, Department of Electrical Engineering and Computer Science, December 2022 — Present
Mentoring undergraduate students to conduct research in mechanistic interpretability, model efficiency, and connectomics.